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Abstract:We demonstrate a third-order neural network that

distinguishes between classes of patterns regardless of theh"

translational position, scale, and angular orientation. A

significant feature of this network is that it is trained on only

one view of each pattern, using a simple single-layer

perceptron learning rule. In approximately one minute of

run time on a Sun 3 computer, the network learns to

distinguish between the letters T and C at any position,

scale, or rotation in a 9 x 9 imagefieM, with 100% accuracy

in a noise-free background. Examples of both second-order

and third-order networks illustrate that geometric
invariances can be built into the network architecture using

information about the relationships expected between input
pixels. The invariances achieved require no learning to

produce and apply to any input patter,n learned by the
network. Higher-order neural networks are therefore

capable of efficiently performing both types of mapping
required by pattern recognition problems, namely feature

extraction and object classification.

1. Introduction

Pattern recognition may be viewed as a two part process of
feature extraction followed by object classification [1-4].
First, a preliminary mapping from an image to a repre-
sentation space is made, generally resulting in a significant
degree of data reduction. A second mapping then operates on
this reduced data to produce a classification or estimation in
an interpretation space. Historically, these steps have required
either mathematical mappings operating directly on a de-

tected image [1,2] or initial feature extraction performed
through optical processing followed by some form of analyti-
cal discrimination. [3]

Both mappings may also be performed using neural network
models [4]. In this paper we discuss neural networks both as
classifiers in hybrid systems and as implementations of the
complete pattern recognition operation. Emphasis is given to
recognition invariant to distortions in scale, translational po-
sition and angular orientation. The relatively poor results with
neural models performing the complete mapping from image
to interpretation is attributable to the unsuitability of the mod-
els used for distortion invariant feature extraction. In contrast,

higher-order neural networks can be designed to implement
the extraction of simple but effective features suitable for in-

plane distortion invariance. Simulation results of higher-
order neural networks demonstrating simultaneous invari-
ance to scale, translation and rotation will be presented.

2. Neural networks for pattern recognition

Pattern recognition requires the nonlinear separation of pat-
tern space into subsets representing the objects to be identi-
fied. Early research into neural networks concentrated on de-
fining their potential for nonlinear discrimination [5,6]. It was
found that a single layer, first-order neural network can only

perform linear discrimination. However, either multilayer,
first-order networks or single layer networks of higher order

can provide the desired nonlinear separation [6].
The capability of neural networks to perform nonlinear sep-

aration can be applied both to extract image features and to in-

terpret images based on a feature set. Practical applications in
distortion invariant pattern recognition have been found for

hybrid systems utilizing neural networks for classification.
Troxel et al [7] successfully applied a multi-layer perceptron
neural network trained with a backward error propagation

(back-propagation) learning algorithm [8,9] to classify laser
radar images of targets, invariant to position, rotation and
scale. The data was first mapped into the magnitude of the
Fourier transform with log radial and angle axis, I F(ln r, 0) I,
feature space. Giover [10] describes a practical product-in-
spection system based on the optical Fourier transform and
neural classification. Rotation and scale invariance has also

been described in a system using complex-log conformal
mapping combined with a distributed neural associative
memory [11]. In all of these approaches utilizing neural
classification, distortion invariance is achieved through non-

neural feature extraction techniques.
It has been argued that nonlinear neural computing is theore-

tically superior to methods such as matched filters or linear
correlation for the complete pattern recognition operation, in-
cluding feature extraction [ 12]. However, the performance of
neural networks to date fails to fulfill this promise. For in-
stance, several types of neural associative memories have
been shown to be computationally more expensive than
matched filters in a study involving the recognition of line
segments [ 13]. Multi-layer networks trained by back-propa-
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gation have also been applied to recognition tasks, examples
being sonar signal classification [14] and distortion invariant
character recognition [15,16]. In these cases, the networks
achieved =80-90% recognition accurancy only after being
shown a training set of images several hundred [ 14] or thou-
sand [15,16] times. Learning by back-propagation to distin-

guish a 'T' from a 'C', invariant to translation and rotation, re-
quired over 5000 presentations of an exhaustive training set
[ 15]. Learning to distinguish 36 patterns in a 5 x 5 pixel array
invariant to translation required over a 1000 training set pres-
entations to a network composed of two-layers, each with 25
Adelines arranged in slabs [16].

The relatively poor performance of neural networks in the
preceding examples, most particularly the failure to produce
efficient distortion invariant recognition, is due to the fact that
first-order networks are poorly suited for extracting distortion
invariant features. One layer of a typical first-order network is
shown in Figure 1.

xj
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Yi
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Input nodes

Figure 1: One layer of a first-order neural network.

The activation level of an output node in a first-order neural
network is determined by an equation of the form:

yi = O('i_ j wij xj) (1)

where O is a nonlinear threshold function, the xj are the ex-
citation values of the input nodes, and the interconnection
matrix elements, wij, determine the weight that each input is
given in the summation.

Achieving translation, scale and rotation invariance re-
quires a neural network to learn relationships between the
input pixels, xj. Note that the summation within the paren-
thesis in Eq. (1) is a function of individual xj's. No advantage
is taken of any known relationships between the ass. Multi-
layer, first-order networks can learn invariances, but require a
great deal of training, and produce solutions that are specific
to particular training sets.

A further disadvantage is that the mappings learned are
opaque: it is not readily evident what features are being ex-
tracted or how classification is being performed. It is gener-
ally assumed that the output of intermediate-layer hidden
nodes in the network correspond to specific features, and in
some applications it is possible to discern what these features
are [ 14]. In distortion invariant recognition application, how-
ever, it is not apparent that first order networks' hidden nodes
come to represent efficient feature sets or even feature sets
sufficient to allow classification by succeeding layers.

3. Higher-order neural networks

The output of nodes in a general higher order network is given
by:

yi = O(_,j wij xj+ _,j _,kWijk XjXk +

_-,j_-,k_,l WijklXj Xk Xl+ ...) (2)

A diagram of a neural network utilizing only second-order
terms is shown in Figure 2. Higher-order neural networks
(HONNs) were evaluated in the 1960s for performing non-
linear discrimination but were rejected as impractical due to
the combinatoric explosion of higher-order terms [6].

Recent research [17-19] has shown that the problem of
combinatoric explosion can be overcome by building invari-
ances into the network architecture using information about
the relationships expected between the input xj's. HONNs are
thus well suited for invariant pattern recognition because fea-
ture extraction is functionally built into the architecture. The
invariances achieved require no learning to produce and
apply to any input pattern learned by the network. Further, a
HONN can perform nonlinear discrimination using only a
single layer so that a simple perceptron learning rule can be
used, leading to rapid convergence [4].

Yi

°° .

X 1 X 2 X 3 X4

Figure 2: A second-order neural network with 4 inputs
and I output.
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As an example, translation invariance can be built into the
second-order neural network with 4 input nodes and 1 output
node shown in Figure 2. Assume that the input patterns ( 10 1
0) and (0 1 0 1) are tobe identified as the same object. If wil3
= wi24 then yi is the same for both inputs. In general, transla-
tion invariance requires that:

wij_ = wiq-k) (3)

i.e., the connections for equally spaced input pairs are all set
equal.

Combinations of invariances can similarly be achieved. A
second-order neural network will be simultaneously invariant

to scale and translation if the weights are set according to the
function [ 18]

w(i,j,k) = w(i,(yk - yj)/(xk - xj)) (4)

Equation (4) implies that wijk is set equal to wij'k' if the slope
of a line drawn between nodesj and k equals that formed be-
tweenf and k', as shown in Figure 3.

!

Figure 3: Translation and scale invariance achieved by
setting wijk = wij'k" if the slope of the line
formed by nodesj and k equals that formed by
nodesj' and k'.

Any object drawn in a 2-D plane can have lines of various
slopes drawn within it. An object's relative content of lines of
different slopes does not change when it is translated in posi-
tion or scaled in size, as long as it is not rotated.

Rotational invariance can be included by using a third-order
neural network, where the output is given by the function

yi = O(Zj Yk Zt wijkl xj xk xt) (5)

As shown in Figure 4, any three points within an object
define a triangle with included angles (_ ,13,)' ). When the ob-
ject is translated, scaled and rotated, the three points in the
same relative positions on the object still form the included
angles (t2,[3,7). Therefore, invariances to all three distortions
can be achieved with a third-order network having an inter-
connection function of the form:

W(jkl = wi ctfJy= wi "f_f_= wi_'tct (6)

Figure 4: Translation, scale and rotation invariance is
achieved by setting all third order weights
equal for sets of inputs j, k, and I which form
similar triangles.

Note that the order of angles matters, but not which angle is
measured first.

4. Simulation results

We have simulated both second- and third-order neural net-
works to achieve simultar_eous invariance to (1) translation
and scale with a second-order network, and (2) translation,
scale and in-plane rotation using a third-order network. The

single layer, second-order network is simulated using a 16 x
16, or 256 node, input field fully interconnected to a single
output note which is thresholded with a fixed-threshold hard
limiter:

®(E)= 1,if Z>0,

O(Z) =0, if Z<0 (7)

There are 256-choose-2 or 32,640 input pairs and therefore
interconnections. The interconnection weights are con-
strained to follow Eq. (4) in order to achieve invariance to
scale and translation. The weights are initially set to zero and
a perceptron learning rule is used:

AWijk= (ti - yi) XjXk (8)

where the expected training output, t, actual output, y, and in-

puts x. are all binary. The network is trained on just two dis-
tinct patterns -- only one size and one location for each pat-
tern. It learns to distinguish between the patterns after ap-
proximately ten passes of the training set, requiring less than
one minute of run time on a Sun 3 workstation. After training,

it successfully distinguishes between all translated and scaled
versions of the two objects with 100% accuracy. No further
training is required to achieve this invariance, as it is built into
the architecture. The system can learn to distinguish between
any two distinct patterns, and has been tested on a variety of
problems, including the T-C problem [5]. Scale invariance of
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a factor of 5 has been demonstrated for this problem, with
100% recognition accuracy.

(a) Co)

Figure 5: Two different scales of T and C drawn in a 16 x
16 pixel window.

Due to the limited resolution of the finite 16 x 16 input win-
dow, residual scale variance can occur. (T,C) pairs are distin-
guished by their relative content of horizontal and vertical in-

formation. For the smallest (T,C) pair, shown in Figure 5a, the
T has three input pair combinations arranged horizontally and
three vertically, while the C has two arranged horizontally and
four vertically. In the next larger scale of (T,C), shown in
Figure 5b, the ratio of horizontal to vertical pixel pairs is
34:34 for the T and 26:42 for the C. It is therefore easier to dis-

tinguish between the smalled (T,C) pair based on their relative
horizontal/vertical content. If the system is trained on the

smaller set Of letters, learning is not pushed to the point where
larger versions can be recognized. In contrast, if large patterns
are used for training, all smaller versions are subsequently
recognized.

Residual scale variance can be eliminated by using bipolar
training values and a modified threshold function such as,

O(E) = 1, ifY > K,

O(E) = -1, ifE < -K, (9)

O(E) = 0, otherwise,

where K is some positive constant. Learning with a sufficient-
ly large value for K forces the network to make a greater dis-
tinction between the initial patterns, allowing easier discrim-
ination between test patterns which are subsequently eval-
uated with a hard limiter. Training the network on the smallest
(T,C) pair using a value of K = 1000 allows correct identifi-

cation of all larger test versions, without greatly increasing the
training time.

For the third-order network simulation an input window of 9
x 9 pixels, or 81 input nodes, is used. The 81-choose-3, or
85,320, weights are constrained to follow Eq. (6) in order to
achieve invariance to scale, translation, and in-plane rotation.
The weights are initially set to zero and a learning rule is used
of the form:

Awijkl = (ti - yi) xj Xk X! ( 1O)

The training set consists of two images, one for each object
to be learned. After approximately 20 passes through the
training set, representing ---1 minute of run time on the Sun 3,
the network learns to distinguish between distortions of the

two objects with 100% accuracy. The T-C problem can be
learned, as shown in Figure 6, with full invariance to trans-
lation within the input field, to scale over a factor of three,
and to 90 ° rotations. In principle, recognition is invariant for
any rotation angle, given sufficient resolution to draw the
image accurately at arbitrary angles.

Training set Example test patterns

Figure 6" Training set and sample test patterns for
distinguishing a 'T' and a 'C', invariant to
translation, scale, and rotation.
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Figure 7: A triangle with included angles, ¢x,13,and y
which may be drawn between the pixels ofa 6
x 6 pixel 'T', but not between those ofa 3 x 3
pixel 'T'.

As in the case of the second-order network, the small win-

dow size leads to some residual scale variance. The triangles
which can be formed between the pixels of the smallest T or C

vary considerably from those which may be formed with
larger versions of the letters. Figure 7 shows an example of a
triangle which included angles o_, [3, and y formed by three
pixels ofa 6 x 6 pixel T. These angles are not enclosed by any
triangle which can be drawn on the smallest, 3 x 3 pixel, T. In
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this case, residual scale variance is eliminated by decreasing
the resolution to which the angles ct, [3, and _, in Eq. (6) and
Figures 4 and 7 are calculated. With larger window sizes, both
the image resolution and the resolution to which _ [3, and 7
are calculated can be increased.

5. Conclusion

Our simulations have demonstrated that a second-order neu-

ral network can be rapidly trained to distinguish between two
patterns regardless of their size and translational position.
100% recognition accuracy is achieved for several different

training pattern pairs using a 16 X 16 input field size. Addi-
tional invariance to in-plane rotation has been achieved using
a 9 x 9 input field. In both cases, training requires only 10-20
presentations of just one example of each object to be learned.
Comparing these results in terms of recognition accuracy and
learning speed show HONNs to be vastly superior to multi-
layer first-order networks trained by back-propagation for
this application.

This superiority results from the HONN architecture's
ability to perform simple, transparent feature extraction.
These simple features, slopes between inputpixel pairs in the
case of the second-order network., and included angles be-
tween input pixel triplets for the third-order network, are suf-
ficient to allow the network to rapidly learn to classify pat-
terns. The provision of a transparent feature extraction mech-
anism allows a HONN to efficiently perform the complete

mapping from image to intermediate feature space to inter-
pretation space required for distortion invariant pattern recog-
nition.
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